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Abstract
We introduce a one-parameter-generalized oscillator algebra Aκ (that covers
the case of the harmonic oscillator algebra) and discuss its finite- and
infinite-dimensional representations according to the sign of the parameter
κ . We define an (Hamiltonian) operator associated with Aκ and examine
the degeneracies of its spectrum. For the finite (when κ < 0) and the
infinite (when κ � 0) representations of Aκ , we construct the associated
phase operators and build temporally stable phase states as eigenstates of the
phase operators. To overcome the difficulties related to the phase operator
in the infinite-dimensional case and to avoid the degeneracy problem for the
finite-dimensional case, we introduce a truncation procedure which generalizes
the one used by Pegg and Barnett for the harmonic oscillator. This yields a
truncated-generalized oscillator algebra Aκ,s , where s denotes the truncation
order. We construct two types of temporally stable states forAκ,s (as eigenstates
of a phase operator and as eigenstates of a polynomial in the generators ofAκ,s).
Two applications are considered in this paper. The first concerns physical
realizations of Aκ and Aκ,s in the context of one-dimensional quantum systems
with finite (Morse system) or infinite (Pöschl–Teller system) discrete spectra.
The second deals with mutually unbiased bases used in quantum information.

PACS numbers: 03.65.Fd, 03.65.Ta, 03.65.Ud, 02.20.Qs

1. Introduction

It is well known that the usual model for the quantized single modes of the electromagnetic
field is the harmonic oscillator with an infinity of states. The infinite-dimensional character
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of the representation space of the corresponding oscillator algebra constitutes a drawback
to define a phase operator in a consistent way [1–3]. In order to get rid of this difficulty,
Pegg and Barnett suggested to truncate to some finite (but arbitrarily large) order the infinite-
dimensional representation space of the oscillator algebra [4]. Their approach also provided
a valid way for calculating the so-called phase states (the eigenvectors of the phase operator).
In the same vein, Vourdas proposed a definition of a phase operator for su(2) and calculated
its eigenstates without a truncation procedure since su(2) admits finite-dimensional unitary
irreducible representations [5]. He also constructed a phase operator and its eigenstates for
su(1, 1), without a truncation procedure although su(1, 1) admits infinite-dimensional unitary
irreducible representations [5].

The main aim of the present work is to develop a method to build unitary phase operators5

and temporally stable phase states for some exactly solvable quantum systems. Various
algebraic structures were used to construct (temporary stable or not) coherent states in
connection with some quantum systems [6–10]. The construction of temporally stable phase
states to be developed in this work is based on a generalized oscillator algebra which takes its
root in [11, 12]. This algebra was introduced to construct isospectral shape invariant potentials
in the framework of fractional supersymmetry.

A second facet of this work is to show that the obtained temporally stable phase states can
be used to generate mutually unbiased bases (MUBs). Such bases are of considerable interest
in quantum information and were recently investigated from an angular momentum approach
[13, 14]. It is not the purpose of this paper to deal with unsolved problems concerning MUBs
but to give a way to construct MUBs from temporally stable states associated with some
exactly solvable systems.

The paper is organized as follows. Section 2 is devoted to the generalized oscillator
algebra Aκ . Temporally stable phase states associated with Aκ are studied in section 3.
Section 4 deals with the truncated oscillator algebra Aκ,s and the corresponding phase states.
As a first application, the derivation of MUBs from phase states is developed in section 5. A
second application is made in section 6 to some exactly solvable quantum systems.

The notations are standard. Let us simply mention that: δa,b stands for the Kronecker
symbol of a and b, I for the identity operator, A† for the adjoint of the operator A, and [A,B]
and {A,B}, respectively, for the commutator and the anticommutator of the operators A and
B. We use a notation of type |ψ〉 for a vector in a Hilbert space and denote by 〈φ|ψ〉 and
|φ〉〈ψ |, respectively, the inner and outer products of the vectors |ψ〉 and |φ〉.

2. Generalized oscillator algebra

2.1. The algebra Aκ

Let Aκ be the algebra spanned by the three linear operators a−, a+ and N, satisfying the
following relations:

[a−, a+] = I + 2κN [N, a±] = ±a± (a−)† = a+ N † = N, (1)

where κ is a real parameter. Note that, for κ = 0, the algebra A0 is nothing but the usual
harmonic oscillator algebra. The operators a−, a+ and N in (1) generalize the annihilation,
creation and number operators used for the harmonic oscillator. Therefore, the algebra Aκ

shall be called the generalized oscillator algebra. This algebra turns out to be a particular case
of the generalized Weyl–Heisenberg algebra Wk introduced in [11, 12] and not to be confused

5 We deal here with unitary rather than Hermitian phase operators. The two kinds of operators are related via an
exponentiation trick.
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with the Lie algebra of the Heisenberg–Weyl group HW(R) used in quantum information
[14]. In fact, Aκ is identical to Wk with

k = 1 f0(N) = aN + b
1√
b
X± = a± κ = 1

2

a

b
, (2)

where the operators f0(N) and X±, and the parameters k, a and b are defined in [12]. It should
be noted that the Cλ-extended oscillator algebra worked out in [15] is a particular case of Wk

(for λ = k).

2.2. Hilbertian representation of Aκ

We denote by Fκ the finite- or infinite-dimensional Hilbert space on which the operators a−,
a+ and N are defined. Let

{|n〉 : n = 0, 1, . . . , d(κ)} (3)

(with d(κ) being finite or infinite) be an orthonormal basis, with respect to the inner product
〈n|n′〉 = δn,n′ , of the space Fκ . It is easy to check that the actions

a+|n〉 =
√

F(n + 1) e−i[F(n+1)−F(n)]ϕ |n + 1〉,
a−|n〉 =

√
F(n) ei[F(n)−F(n−1)]ϕ |n − 1〉,

a−|0〉 = 0 N |n〉 = n|n〉
(4)

provide a Hilbertian representation of the algebra Aκ defined by (1). In equation (4), the
real parameter ϕ is arbitrary, and the positively valued function F : N → R+ satisfies the
recurrence relation

F(n + 1) − F(n) = 1 + 2κn F(0) = 0. (5)

The iteration of (5) yields

F(n) = n[1 + κ(n − 1)], (6)

which is linear in n only for κ = 0. Since F(n) ∈ R+, we must have the following condition:

1 + κ(n − 1) > 0 (7)

for n > 0. Condition (7) determines the value of d(κ) and then the dimension of Fκ . The
finiteness or infiniteness of Fκ depends on the sign of the parameter κ . For κ � 0, the space Fκ

is infinite dimensional. In fact, for κ = 0, the space F0 coincides with the usual Hilbert–Foch
space for the harmonic oscillator. For κ < 0, there exists a finite number of states satisfying
condition (7). As a matter of fact, for κ < 0, n can take the values

n = 0, 1, . . . , E

(
− 1

κ

)
≡ d − 1, (8)

where E(x) stands for the integer part of x. The finiteness of the space Fκ induces properties
of the operators a− and a+ which differ from those corresponding to an infinite-dimensional
space. In particular, the trace of any commutator in the finite-dimensional space must be zero.
This implies that the parameter κ is related to the dimension d of the space Fκ by

d = 1 − 1

κ
. (9)

Equation (9) requires that −1/κ be a positive integer. In the following, we shall assume that
−1/κ ∈ N

∗ when κ < 0.
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2.3. A generalized oscillator Hamiltonian

We are now in a position to define an operator which generalizes (up to an additive constant)
the Hamiltonian a+a− + 1/2 for the one-dimensional harmonic oscillator. Starting from

a+a−|n〉 = F(n)|n〉 ⇒ F(N) = a+a−, (10)

we refer F(N) to as an Hamiltonian associated with the generalized oscillator algebra Aκ .
The eigenvalue equation

F(N)|n〉 = n[1 + κ(n − 1)]|n〉 (11)

gives the energies (6) of a quantum dynamical system described by the Hamiltonian operator
F(N). Let us discuss the degeneracies of the levels F(n) given by (6).

(i) In the case κ � 0, the spectrum of F(N) is nondegenerate.
(ii) In the case κ < 0, the eigenvalues of F(N) can be rewritten as

F(n) = n
d − n

d − 1
, (12)

so that

F(n) = F(d − n) n = 1, 2, . . . , d − 1. (13)

Thus, for d even, the levels are doublets except the fundamental level n = 0 and the level
n = d/2 which are nondegenerate. For d odd, the levels are two-fold degenerate except
the fundamental level n = 0 which is a singlet.

In both cases (κ � 0 and κ < 0), we note that the Perron–Frobenius theorem [16] is
satisfied, namely, the fundamental level is nondegenerate.

It is known that one-dimensional quantum dynamical systems (on the real line) correspond
to nondegenerate spectra. Therefore, the representation obtained for Aκ with κ < 0 cannot be
used to describe a particle evolving in some nonrelativistic potential on the real line. However,
a modification of the generalized oscillator algebra Aκ can be achieved in order to avoid the
degeneracies of F(N). This will be done in section 4 by means of a truncation procedure
which will prove also to be useful in the case κ � 0 to define in a consistent way the phase
operator for some exactly solvable systems.

3. Temporally stable phase states for Aκ

We shall treat separately the cases κ � 0 and κ < 0 associated with the infinite- and the
finite-dimensional representation of the generalized oscillator algebra Aκ , respectively.

3.1. The infinite-dimensional case

In the case κ � 0, we decompose a− and a+ as

a− = E∞
√

F(N) a+ =
√

F(N) (E∞)† , (14)

where

E∞ :=
∞∑

n=0

ei[F(n+1)−F(n)]ϕ |n〉〈n + 1|. (15)

It is important to emphasize that

E∞ (E∞)† =
∞∑

n=0

|n〉〈n| = I (E∞)† E∞ =
∞∑

n=1

|n〉〈n| = I − |0〉〈0|, (16)

a result which means that E∞ is not a unitary operator.
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To find the phase states corresponding to κ � 0, let us consider the eigenvalue equation

E∞|z〉 = z|z〉 z ∈ C. (17)

By expanding the vector |z〉 of Fκ as

|z〉 =
∞∑

n=0

Cnz
n|n〉, (18)

it is easy to see that the complex coefficients Cn satisfy the relation

Cn+1 = e−i[F(n+1)−F(n)]ϕCn n ∈ N. (19)

It follows that

Cn = e−iF(n)ϕC0 n ∈ N, (20)

where the coefficient C0 can be determined from the normalization condition of the states |z〉.
As a result, we can take (up to a phase factor)

|z〉 =
√

1 − |z|2
∞∑

n=0

zn e−iF(n)ϕ |n〉 (21)

on the domain {z ∈ C, |z| < 1}.
Following the method developed in [17] for the Lie algebra su(1, 1), we define the states

|θ, ϕ〉 by

|θ, ϕ〉 := lim
z→eiθ

1√
1 − |z|2

|z〉, (22)

where θ ∈ [−π, +π ] (see also [18] where a limit of type z → eiθ ⇒ |z| → 1 is used in a
similar way). We thus get the states

|θ, ϕ〉 =
∞∑

n=0

einθ e−iF(n)ϕ |n〉. (23)

These states, defined on the unit circle S1, turn out to be phase states. Indeed, we have

E∞|θ, ϕ〉 = eiθ |θ, ϕ〉. (24)

Hence, the operator E∞ is a (nonunitary) phase operator.
The main properties of the states |θ, ϕ〉 are the following.

(i) They are temporally stable in the sense that the relation

e−iF(N)t |θ, ϕ〉 = |θ, ϕ + t) (25)

is satisfied for any value of the real parameter t. This property is due to the presence of
the parameter ϕ in the phase operator E∞.

(ii) They are not normalized and not orthogonal. However, for fixed ϕ, they satisfy the closure
relation

1

2π

∫ +π

−π

dθ |θ, ϕ〉〈θ, ϕ| = I. (26)

Finally, observe that for ϕ = 0 the states |θ, 0〉 have the same form as those derived in
[17] for su(1, 1).
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3.2. The finite-dimensional case

For κ < 0 with −1/κ ∈ N
∗, the Hilbert space Fκ is d dimensional with d = 1 − 1/κ . The

action of a− and a+ on Fκ is given by (4) supplemented by

a+|d − 1〉 = 0, (27)

which easily follows from the calculation of 〈d − 1|a−a+|d − 1〉.
Let us look for a decomposition of the creation a+ and annihilation a− operators similar

to (14) for the case κ � 0. Thus, let us put

a− = Ed

√
F(N) ⇔ a+ =

√
F(N) (Ed)

† . (28)

The operator Ed can be seen to satisfy

Ed |n〉 = ei[F(n)−F(n−1)]ϕ |n − 1〉 (29)

for n = 1, 2, . . . , d − 1. For n = 0, we shall assume that

Ed |0〉 = ei[F(0)−F(d−1)]ϕ |d − 1〉, (30)

so that (29) is valid modulo d. (Note that, in view of (28), a−|0〉 = 0 does not imply that
Ed |0〉 = 0.) It follows that we have

(Ed)
† |n〉 = e−i[F(n+1)−F(n)]ϕ |n + 1〉, (31)

where n + 1 should be understood modulo d. As an important result (to be contrasted with the
situation where κ � 0), the operator Ed is unitary. Therefore, equation (28) constitutes a polar
decomposition of a− and a+.

We are now ready to derive the eigenstates of the operator Ed. Let us consider the
eigenvalue equation

Ed |z〉 = z|z〉 |z〉 =
d−1∑
n=0

Cnz
n|n〉 (32)

with z ∈ C. Here again (as in the case κ � 0), we obtain a recurrence relation for the
coefficients Cn, namely,

Cn = e−i[F(n)−F(n−1)]ϕCn−1 n = 1, 2, . . . , d − 1, (33)

with the cyclic condition

C0 = zd e−i[F(0)−F(d−1)]ϕCd−1. (34)

Therefore, we get

Cn = e−iF(n)ϕC0 n = 0, 1, . . . , d − 1, (35)

with the discretization condition

zd = 1. (36)

As a consequence, the complex variable z is a root of unity given by

z = qm m = 0, 1, . . . , d − 1, (37)

where

q := e2π i/d (38)

is reminiscent of the parameter used in the theory of quantum groups. The constant C0 can be
calculated from the normalization condition 〈z|z〉 = 1 to be

C0 = 1√
d

(39)

6
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up to a phase factor. Finally, we arrive at the following eigenstates |z〉 ≡ |m,ϕ〉 of Ed:

|m,ϕ〉 = 1√
d

d−1∑
n=0

e−iF(n)ϕqmn|n〉. (40)

The states |m,ϕ〉, labeled by the parameters m ∈ Z/dZ and ϕ ∈ R, satisfy

Ed |m,ϕ〉 = eiθm |m,ϕ〉 θm = m
2π

d
, (41)

which shows that Ed is indeed a phase operator. In the particular case ϕ = 0, the states |m, 0〉
are similar to those derived in [17] for the Lie algebra su(2). In this case, the states |m, 0〉
correspond to an ordinary discrete Fourier transform of the basis {|n〉 : n = 0, 1, . . . , d − 1}
of the d-dimensional space Fκ .

The phase states |m,ϕ〉 have remarkable properties (to be compared to those for the states
|θ, ϕ〉 of the case κ � 0).

(i) They are temporally stable under ‘time evolution’. In other words, they satisfy

e−iF(N)t |m,ϕ〉 = |m,ϕ + t〉. (42)

for any value of the real parameter t. We note here the major role of the parameter ϕ in
ensuing the temporal stability of the states |m,ϕ〉.

(ii) For fixed ϕ, they satisfy the equiprobability relation

|〈n|m,ϕ〉| = 1√
d

n,m ∈ Z/dZ. (43)

(iii) For fixed ϕ, they satisfy the orthonormality relation

〈m,ϕ|m′, ϕ〉 = δm,m′ m,m′ ∈ Z/dZ (44)

and the closure property
d−1∑
m=0

|m,ϕ〉〈m,ϕ| = I. (45)

(iv) The overlap between two phase states |m′, ϕ′〉 and |m,ϕ〉 reads

〈m,ϕ|m′, ϕ′) = 1

d

d−1∑
n=0

qρ(m−m′,ϕ−ϕ′,n), (46)

where

ρ(m − m′, ϕ − ϕ′, n) = −(m − m′)n +
d

2π
(ϕ − ϕ′)F (n) (47)

and q is defined in (38). Therefore, the temporally stable phase states are not all orthogonal.

4. Truncated generalized oscillator algebra and phase states

As discussed in section 2, in the case κ � 0 the Hilbert space Fκ associated with Aκ is infinite
dimensional. It is then impossible to define a unitary phase operator (see section 3). On the
other hand, in the case κ < 0 with −1/κ ∈ N

∗ the space Fκ is finite dimensional, and there
is no problem to define a unitary phase operator. However, the spectrum of the Hamiltonian
F(N) associated with Aκ for −1/κ ∈ N

∗ exhibits degeneracies. Therefore, it is appropriate
to truncate the space Fκ for both κ � 0 and κ < 0 in order to get a subspace Fκ,s of dimension
s with the basis {|n〉 : n = 0, 1, . . . , s − 1}. For κ � 0, the truncation is done at s sufficiently
large (note that the difference F(n + 1) − F(n) between two consecutive states increases with
n for κ > 0 so that we can ignore, in a perturbative scheme, the states with n large). For
κ < 0, the truncation can be done at s = (d + 2)/2 for d even and at s = (d + 1)/2 for d odd
(with d given by (9)) in order to avoid the degeneracies of F(N).

7
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4.1. The truncated algebra Aκ,s

Inspired by the work of Pegg and Barnett [4], we define the truncated generalized oscillator
algebra Aκ,s through the three linear operators b−, b+ and N satisfying the following relations:

[b−, b+] = I + 2κN − F(s)|s − 1〉〈s − 1| [N, b±] = ±b± (b−)† = b+ N † = N. (48)

The algebraAκ,s generalizes the one introduced by Pegg and Barnett for the harmonic oscillator
in their discussion of the phase operator for the single modes of the electromagnetic field [4].
Indeed, the algebra A0,s , for κ = 0, is identical to the truncated oscillator algebra considered
in [4].

Following the same approach as in subsection 2.2, we define an s-dimensional
representation of Aκ,s (whatever the sign of κ is) via the actions

b+|n〉 =
√

F(n + 1) e−i[F(n+1)−F(n)]ϕ |n + 1〉,
b−|n〉 =

√
F(n) ei[F(n)−F(n−1)]ϕ |n − 1〉,

b−|0〉 = 0 b+|s − 1〉 = 0 N |n〉 = n|n〉
(49)

for n = 0, 1, . . . , s − 1. Note that a further condition is necessary here, namely, the upper
limit condition b+|s − 1〉 = 0. It can be checked that the recurrence relation (5) is equally
valid for Aκ,s . Therefore, equations (6) and (12) can be applied with n = 0, 1, . . . , s − 1.

It is interesting to note that the creation and annihilation operators b− and b+ satisfy (in
the representation under consideration) the nilpotency relations

(b−)s = (b+)s = 0, (50)

which are similar (for s = k ∈ N \ 0, 1) to those describing the so-called k-fermions that are
objects interpolating between fermions (for k = 2) and bosons (for k → ∞) [19].

4.2. Phase states for Aκ,s

For the truncated algebra Aκ,s (corresponding to d(κ) finite or infinite), the analog of the phase
operator Ed is the unitary operator

Es := ei[F(0)−F(s−1)]ϕ |s − 1〉〈0| +
s−1∑
n=1

ei[F(n)−F(n−1)]ϕ |n − 1〉〈n|. (51)

By using the same reasoning as in subsection 3.2, we obtain

Es |m,ϕ〉 = eiθm |m,ϕ〉 θm = m
2π

s
, (52)

where

|m,ϕ〉 = 1√
s

s−1∑
n=0

e−iF(n)ϕ(qs)
mn|n〉, (53)

with m ∈ Z/sZ, ϕ ∈ R and qs given by

qs := e2πi/s . (54)

We are thus left with phase states |m,ϕ〉 associated with the phase operator Es. These states
satisfy the same properties as those for Ed (see section 3.2) except that d is replaced by s in
some places.

8
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4.3. A new type of discrete phase states

It is well known that, for quantum systems with a finite spectrum (like the Morse system)
or for Lie algebras with finite-dimensional unitary representations (as for instance su(2)),
the construction of coherent states cannot be achieved by looking for the eigenstates of an
annihilation operator [8] or of a compact shift operator [6].

For the algebra Aκ,s , the difficulty inherent to the finiteness of the representation can be
overcome as follows. We define the operator

Vs := b− +
(b+)s−1

E(s − 1)
, (55)

where the function E is defined via

E(0) := 1 E(n) := F(1)F (2) · · · F(n) n = 1, 2, . . . , s − 1. (56)

The operator Vs is an idempotent operator of order s since

(Vs)
s = I. (57)

Let us consider the eigenvalue equation

Vs |z〉 = z|z〉 |z〉 =
s−1∑
n=0

Cnz
n|n〉 z ∈ C. (58)

By using (57), we obtain that z is discretized as

z = (qs)
μ μ ∈ Z/sZ, (59)

with qs being defined by (54). Then, it is a simple matter to calculate the coefficients Cn and
to normalize the μ- and ϕ-dependent states |z〉 ≡ |μ, ϕ〉. This leads to

|μ, ϕ〉 = C0

s−1∑
n=0

1√
E(n)

(qs)
nμ e−iF(n)ϕ |n〉, (60)

where the normalization factor C0 is such that (up to a phase factor)

C0
−2 =

s−1∑
n=0

1

E(n)
. (61)

The states |μ, ϕ〉 are temporally stable and are similar to the coherent states introduced by
Gazeau and Klauder [8] except that their labeling includes an integer and they correspond to
the eigenvectors of a polynomial in terms of generalized creation and annihilation operators.
They satisfy

〈μ, ϕ|μ′, ϕ′〉 = C2
0

s−1∑
n=0

1

E(n)
(qs)

n(μ′−μ) e−iF(n)(ϕ′−ϕ) (62)

and

1

s

s−1∑
m=0

|μ, ϕ〉〈μ, ϕ| = C2
0

s−1∑
n=0

1

E(n)
|n〉〈n|. (63)

Consequently, they are not orthogonal.
We close this subsection with a remark concerning the unitary operator

Us := (qs)
N (64)

9
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that is a companion of Vs in the following sense. This operator satisfies the cyclicity relation

(Us)
s = I. (65)

Furthermore, we have the s-commutation relation

VsUs − qsUsVs = 0. (66)

Equations (57), (65) and (66) are necessary conditions for the pair (Us, Vs) be a pair of Weyl
(see [14]). However, this is not the case because Vs is not unitary.

5. Application to mutually unbiased bases

As an a priori unexpected connection, the approach in subsection 3.2 and 4.2 for the finite-
dimensional cases (for Aκ and Aκ,s) can be further developed for deriving MUBs. Let us recall
that two orthonormal bases {|aα〉 : α = 0, 1, . . . , d − 1} and {|bβ〉 : β = 0, 1, . . . , d − 1} in
a d-dimensional Hilbert space (with an inner product 〈 | 〉) are said to be mutually unbiased iff

|〈aα|bβ〉| = δa,bδα,β +
1√
d

(1 − δa,b). (67)

For fixed d, it is known that the number N of MUBs is such that N � d + 1 and that the limit
N = d + 1 is reached when d is the power of a prime number [20, 21].

5.1. MUBs from phase states for Aκ

In order to generate MUBs along the line of the developments of subsection 3.2, let us further
examine some properties of the phase operator Ed for Aκ with κ < 0. This operator can be
written in a compact form as

Ed =
d−1∑
n=0

ei[F(n)−F(n−1)]ϕ |n − 1〉〈n| (68)

(in this section, the summations on n are understood modulo d). It is easy to check that

(Ed)
d = I, (69)

so that Ed is idempotent. The operator Ed can be decomposed as

Ed = UϕV, (70)

where the operators Uϕ and V are defined by

Uϕ := ei[F(N+1)−F(N)]ϕ V :=
d−1∑
n=0

|n − 1〉〈n|. (71)

The operators Uϕ and V are unitary and satisfy the pseudocommutation relation

UϕV = e2iϕ/(d−1)V Uϕ. (72)

In addition, the operator V satisfies the idempotency relation

V d = I (73)

and, when the parameter ϕ is quantized as

ϕ = −π
d − 1

d
p p ∈ Z/dZ, (74)

we have

(Uϕ)d = eiπ(d−1)pI. (75)

10
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In view of (74), equation (72) can be rewritten as

V Uϕ = qpUϕV (76)

(see (38) for the definition of q). For the discrete values of ϕ afforded by (74), equation (40)
yields the phase states |m,ϕ〉 ≡ |m,p〉 given by

|m,p〉 = 1√
d

d−1∑
n=0

qn(d−n)p/2+nm|n〉 p,m ∈ Z/dZ, (77)

which coincides with the vector |aα〉, with a ≡ p and α ≡ m, obtained in [13] in an SU(2)

approach to MUBs. Alternatively, by putting

k := d − n − 1 |n〉 = |d − k − 1〉 ≡ |k〉, (78)

equation (77) becomes

|m,p〉 = 1√
d

d−1∑
k=0

q(k+1)(d−k−1)p/2−(k+1)m|k〉, p,m ∈ Z/dZ, (79)

which coincides with the vector |aα〉, with a ≡ p and α ≡ m, derived in [14] in an angular
momentum approach to MUBs. It is to be observed that (77) and (79) correspond to quadratic
discrete Fourier transforms.

To make a further contact with [13, 14], let us note that when ϕ is discretized according
to (74), the inner product 〈m,ϕ|m′, ϕ′〉 ≡ 〈m,p|m′, p′〉 (see equation (46)) can be rewritten
as

〈m,p|m′, p′〉 = 1

d
S(u, v,w) (80)

with

u := p − p′ v := −(p − p′)d + 2(m′ − m) w := d. (81)

In equation (80), the factor S(u, v,w) denotes a generalized quadratic Gauss sum defined by
[22]

S(u, v,w) :=
|w|−1∑
k=0

eiπ(uk2+vk)/w, (82)

where u, v and w are integers (the nonvanishing of S(u, v,w) requires uw + v even). In
the special case where d is a prime integer and p′ = p, the calculation of S(u, v,w) in (80)
through the methods developed in [22, 23] (see also [13]) leads to

|〈m,p|m′, p′〉| = 1√
d

. (83)

This result shows that the d bases

Bp := {|m,p〉 : m = 0, 1, . . . , d − 1} p = 0, 1, . . . , d − 1 (84)

of the d-dimensional space Fκ , with d given by (9) are mutually unbiased. On the other hand,
in view of (43), it is clear that any basis Bp and the basis

Bd := {|n〉 : n = 0, 1, . . . , d − 1}, (85)

known as the computational basis in quantum information and quantum computation, are
mutually unbiased. As a conclusion, for d prime, the d bases Bp with p = 0, 1, . . . , d − 1 and
the computational basis Bd constitute a complete set of d + 1 MUBs. This result, in agreement
with the one derived in [13, 14], is the starting point for constructing MUBs in power prime
dimension.

11
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5.2. MUBs from phase states for Aκ,s

By applying a discretization procedure similar to the one introduced in subsection 5.1, we can
construct MUBs from the phase states (53) for the truncated algebra Aκ,s , with κ = 0. Let us
quantize the parameter ϕ by putting

ϕ = π
2

sκ
p p ∈ Z/sZ. (86)

Then, equation (53) leads to the states |m,ϕ〉 ≡ |m,p〉 given by

|m,p〉 = 1√
s

s−1∑
n=0

(qs)
n(δ−n)p+nm|n〉 p,m ∈ Z/sZ, (87)

where

δ := 1 − 1

κ
. (88)

In this subsection, we shall assume that 1/κ ∈ Z so that δ ∈ Z (note that δ = d for κ < 0).
The overlap 〈m,p|m′, p′〉 can be written in terms of the generalized quadratic Gauss sum (82).
Indeed, we have

〈m,p|m′, p′〉 = 1

s

s−1∑
n=0

(qs)
n(δ−n)(p′−p)+n(m′−m) = 1

s
S(u, v,w), (89)

where

u := 2(p − p′) v := 2δ(p′ − p) + 2(m′ − m) w := s. (90)

We can proceed as in subsection 5.1 in order to show that the various states |m,p〉 generate,
together with the s-dimensional basis {|n〉 : n = 0, 1, . . . , s − 1}, s + 1 MUBs when s is a
prime integer.

6. Application to exactly solvable potentials

The main goal of this section is to show how the generalized oscillator algebra Aκ is relevant
for the study of one-dimensional exactly solvable potentials in the context of supersymmetric
quantum mechanics and how MUBs can be derived from the temporally stable phase states
for some quantum mechanical systems.

6.1. Creation, annihilation and transfer operators

Ordinary supersymmetric quantum mechanics can be presented in different ways (e.g. see
[24–30]). We adopt here the approach according to which a supersymmetric dynamical
system is defined by a triplet (H,Q+,Q−)2 of linear operators acting on a Z2-graded Hilbert
space H and satisfying the following relations:

H = H † Q− = Q†
+ Q2

± = 0 {Q−,Q+} = H [H,Q±] = 0. (91)

(In this approach, ordinary supersymmetric quantum mechanics is a particular case,
corresponding to k = 2, of fractional supersymmetric quantum mechanics of order k dealing
with triplets (H,Q+,Q−)k which satisfy relations generalizing (91) and which correspond to
a Zk grading [12].) The operators Q+ and Q− are the supercharges of the one-dimensional
system. We suppose that the spectrum of the self-adjoint operator H, the supersymmetric
Hamiltonian of the system, is discrete. The Hamiltonian H can be written as

H = H0 + H1, (92)

12
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where H0 and H1 act on the states |n, 0〉 and |n, 1〉 of even and odd grading, respectively.
In other words, the Hilbert space H is decomposed as

H = H0 ⊕ H1 H0 := {|n, 0〉 : n ranging} H1 := {|n, 1〉 : n ranging}, (93)

which reflects the Z2 grading. We shall assume that there is no supersymmetry breaking. In
this case, the Hamiltonians H0 and H1 are isospectral except that the ground state of H0 has no
supersymmetric partner in the spectrum of H1.

By combining the above-mentioned considerations on supersymmetry with the Infeld and
Hull factorization method [28], we can construct creation, annihilation and transfer operators
for an exactly solvable Hamiltonian in one dimension [24–35]. For this purpose, let us
consider a one-dimensional quantum system embedded in a real potential v0 : x �→ v0(x).
The corresponding Hamiltonian is

H0 := −1

2

d2

dx2
+ v0. (94)

Let us suppose that the Hamiltonian H0 is exactly solvable and admits the discrete spectrum

e0 = 0 < e1 < e2 < · · · < en < en+1 < · · · , (95)

with a finite or infinite number of levels. We know that the Hamiltonian H0 of this system can
be factorized as [25, 26, 28–30]

H0 = x+x− x+ := 1√
2

(
− d

dx
+ w

)
x− := 1√

2

(
d

dx
+ w

)
. (96)

The superpotential w : x �→ w(x) satisfies the Ricatti equation

v0 = 1

2

(
w2 − dw

dx

)
. (97)

Since the ground state energy is assumed to be zero, it is easy to see that the potential v0 and
the superpotential w can be expressed in terms of the ground state wavefunction.

It is important to stress that the operators x+ and x− are not in general creation and
annihilation operators for H0 [25, 26, 29, 30, 35]. They are indeed transfer operators from the
spectrum of H0 to the one of the H1 and vice versa. To identify them, we start by representing
the supercharge operators and the supersymmetric Hamiltonian by 2 × 2 matrices [25–27, 30]

Q− =
(

0 x−

0 0

)
Q+ =

(
0 0
x+ 0

)
H =

(
H1 0
0 H0

)
, (98)

where the operator

H1 = x−x+ = −1

2

d2

dx2
+ v1 (99)

is the supersymmetric partner of H0 and corresponds to a new potential v1 : x �→ v1(x). The
potential

v1 = 1

2

(
w2 +

dw

dx

)
(100)

is the supersymmetric partner of the potential v0. The Hamiltonian H1 is also exactly solvable
and isospectral to H0 (except for the ground state). Indeed,

H0|n, 0〉 = e0
n|n, 0〉 ⇒ H1(x

−|n, 0〉) = e0
n(x

−|n, 0〉), (101)

where e0
n := en. Similarly,

H1|n, 1〉 = e1
n|n, 1〉 ⇒ H0(x

+|n, 1〉) = e1
n(x

+|n, 1〉). (102)
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(For more details, see [25, 26, 29] and the recent topical review [30].) From equations (101)
and (102), it is clear that we can take

x−|n+1, 0〉 = √
en+1 ei(en+1−en)ϕ|n, 1〉 (103)

x+|n, 1〉 = √
en+1 e−i(en+1−en)ϕ|n+1, 0〉, (104)

where ϕ is a real number, and that the energies of the supersymmetric partners H0 and H1 are
related by

e1
n = e0

n+1. (105)

Note that the operator x− (respectively x+) converts an eigenfunction of H0 (respectively H1)
into an eigenfunction of H1 (respectively H0) with the same energy. Thus, the operators x−

and x+ transfer the states from one spectrum to its partner spectrum. To introduce the ladder
operators inside a given spectrum, we first consider the unitary operator U relating the states
|n, 0〉 and |n, 1〉 through (cf [31–33])

U :=
∑

n

|n, 1〉〈n, 0| ⇒ |n, 1〉 = U |n, 0〉. (106)

Operators similar to U were already considered for continuous spectra [31, 33] and for discrete
spectra [32, 34]. Then, we define the operators [32–34]

a+ := x+U a− := U †x−. (107)

By using equations (103) and (104), we obtain

a−|n, 0〉 = √
en ei(en−en−1)ϕ|n−1, 0〉 (108)

a+|n, 0〉 = √
en+1 e−i(en+1−en)ϕ|n+1, 0〉. (109)

Consequently, a+ and a− are creation and annihilation operators for the Hamiltonian H0.
Furthermore, it is easily seen that

a+a− = x+x− = H0. (110)

Ladder operators for the Hamiltonian H1 can be introduced in a similar way.

6.2. Physical realizations of the generalized oscillator algebra

To simplify the notation, we set |n〉 := |n, 0〉. From equations (108) and (109), we get

[a−, a+]|n〉 = (en+1 − en)|n〉. (111)

The number operator N defined by

N |n〉 = n|n〉 (112)

is in general (for an arbitrary quantum system) different from the product a+a−. Let us
consider the situation where the creation and annihilation operators satisfy the commutation
relation

[a−, a+] = aN + b, (113)

a relation used in the study of the so-called polynomial Heisenberg algebra introduced in [36].
In other words, we assume that the energy gap en+1 − en between two successive levels is
linear in n, i.e.

en+1 − en = an + b, (114)
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where a and b are two real parameters. We also assume that the eigenvalues of the operator
aN + b are positive. With these choices, the algebra generated by the operators a+, a− and N
is identical to the generalized oscillator algebra Aκ modulo the replacements

a± → a±
√

b
κ → 1

2

a

b
(115)

in equation (1). Thus, from equations (108)–(110), we have

H0 = a+a− = 1
2aN(N − 1) + bN. (116)

For a = 0, the spectrum of H0 is nonlinear and is given by

H0|n〉 = en|n〉 en = 1
2an(n − 1) + bn. (117)

Particular realizations of (117) in terms of one-dimensional solvable potentials were previously
considered in [9, 10, 12, 37, 38]. Following the developments in [12], we consider the following
remarkable cases.

(i) For (a = 0, b > 0), the spectrum of H0 is infinite dimensional (n ∈ N) and does not
present degeneracies.

(ii) For (a > 0, b � 0), the spectrum of H0 is infinite dimensional (n ∈ N) and does not
present degeneracies.

(iii) For (a < 0, b � 0), the spectrum of H0 is finite dimensional with n = 0, 1, . . . , s − 1,
where

s = −b

a
+

3

2
for − 2

b

a
odd (118)

s = −b

a
+ 1 for − 2

b

a
even, (119)

and all the states are nondegenerate.

It is possible to find a realization of each of the three cases above in terms of exactly
solvable dynamical systems in one dimension. We give below the corresponding potential v0

and transfer operators.

(i) The case (a = 0, b = 1) corresponds to the harmonic oscillator (for which n ∈ N) with

v0(x) = 1
2 (x2 − 1) (120)

and

x± ≡ a± = 1√
2

(
∓ d

dx
+ x

)
. (121)

(For the harmonic oscillator, U reduces to the identity operator.)
(ii) The case (a = 1, 2b = u + v + 1), with u > 1 and v > 1, corresponds to the Pöschl–Teller

potential (for which n ∈ N) with

v0(x) = 1

8

[
u(u − 1)

sin2 x
2

+
v(v − 1)

cos2 x
2

]
− 1

8
(u + v)2 (122)

and

x± = 1√
2

[
∓ d

dx
+

1

2

(
u cot

x

2
− v tan

x

2

)]
. (123)

(iii) The case (a = −1, 2b = 2l − 1), with l ∈ N
∗, corresponds to the Morse potential (for

which n = 0, 1, . . . , l) with

v0(x) = 1
2 [e−2x − (2l + 1) e−x + l2], (124)

and

x± = 1√
2

(
∓ d

dx
+ l − e−x

)
. (125)
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6.3. Phase states and MUB for exactly solvable systems

From equation (53), we can obtain the phase states for a general quantum system described
by a truncated generalized oscillator algebra Aκ,s . We get

|m,ϕ〉 = 1√
s

s−1∑
n=0

e−ienϕ(qs)
nm|n〉, (126)

with s sufficiently large for the harmonic oscillator and the Pöschl–Teller systems and s = l +1
for the Morse system. Furthermore, equation (87) provides with a mean to generate MUBs
associated with the cases (i)–(iii) of subsection 6.2.

On the other hand, the discrete phase state (60) reads here

|μ, ϕ〉 = C0

s−1∑
n=0

1√
E(n)

e−ienϕ(qs)
nμ|n〉, (127)

where the factor E(n) can be calculated in the different cases (i)–(iii). A simple calculation
gives the following results in term of the � function.

(i) For the harmonic oscillator potential:

E(n) = �(n + 1). (128)

(ii) For the Pöschl–Teller potential:

E(n) = �(n + 1)�(n + u + v + 1)

2n�(u + v + 1)
. (129)

(iii) For the Morse potential:

E(n) = �(n + 1)�(2l)

2n�(2l − n)
. (130)

It should be mentioned that the discrete phase states given by (127) differ from the coherent
states for exactly solvable potentials derived in [10, 34, 36, 38, 39] from supersymmetric
quantum mechanics techniques. The notable difference comes from the fact that the states
(127) are temporally stable and are labeled by an integer instead of a continuous complex
variable as in the coherent states derived in [10, 34, 36, 38, 39]. The states (127) are
eigenstates of the operator (55), whereas the coherent states in [10, 34, 36, 38, 39] are
obtained from the three standard definitions (involving annihilation operator, displacement
operator and uncertainty relation).

7. Concluding remarks

The starting point of this paper is based on the definition of a generalized oscillator algebra
Aκ . This algebra is interesting in two respects. First, it describes in an unified way some
exactly solvable one-dimensional systems having a nonlinear spectrum (for κ = 0) or a linear
spectrum (for κ = 0). As typical examples, these quantum systems correspond to the Pöschl–
Teller potential (for κ > 0), the Morse potential (for κ < 0) and the infinite square well
potential (for κ = 1/3) in addition to the harmonic oscillator potential (for κ = 0). Second,
the algebra Aκ can take into account some nonlinear effects that may occur in the quantum
description of quantized modes of the electromagnetic field (cf [40]).

In connection with the algebra Aκ , the present work addresses three problems: the
construction of a phase operator, the determination of its temporally stable eigenstates (the
so-called phase states) and the derivation of MUBs from the obtained phase states. This is
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the first time that a connection between MUBs and dynamical systems is established. In this
regard, the character ‘temporally stable’ of the eigenstates of the phase operator is essential
for the derivation of MUBs. The main results of this paper are as follows.

For the case κ � 0 (which corresponds to an infinite representation of Aκ ), the phase
operator is not unitary. We note in passing that the corresponding phase states are similar
to those derived in [17] except that our states are temporally stable. However, for κ � 0,
by making a (à la Pegg and Barnett) truncation, which gives rise to a truncated generalized
oscillator algebra Aκ,s , we can define a unitary phase operator whose eigenstates lead to
MUBs.

For the case κ < 0 (which corresponds to a finite representation of Aκ ), it is possible
to construct a unitary phase operator whose eigenstates are temporally stable. MUBs can be
derived as a subset of these states. For κ < 0, the consideration of a truncated generalized
oscillator algebra Aκ,s is nevertheless necessary in order to establish a connection with the
Morse system and to derive associated MUBs.

As a conclusion, in both cases (κ � 0 and κ < 0), the truncation procedure makes
it possible to define a unitary phase operator for exactly solvable systems and to generate
temporally stable phase states from which MUBs can be derived.

Another result of this paper concerns a new type of phase states. These temporally stable
phase states, namely, the states (60), are associated with the truncated algebra Aκ,s . They are
eigenstates of an operator defined in the enveloping algebra of Aκ,s and constitute discrete
analogs of the coherent states derived in [8]. More generally, this result shows that it is
possible, for a finite spectrum, to derive new phase states similar to the coherent states of [8]
constructed, for an infinite spectrum, as eigenstates of an annihilation operator. The key of the
derivation of the new states (for a finite spectrum) is to add a power of the creation operator to
the annihilation operator.

To close this paper, let us mention that the concept of MUBs was recently extended to
infinite-dimensional Hilbert spaces [41]. In this vein, it is hoped that the temporally stable
phase states derived in this work for the infinite-dimensional case could serve as a hint for
deriving MUBs for continuous variables, a difficult challenge.
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